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A study is made of the kinetics of flow of the finite volume of an electrorheological liquid on a horizontal
substrate.

The spreading of liquids is of importance in many physicochemical phenomena and technological processes. A
liquid droplet spreading over a solid surface represents a convenient object of investigation in this field. However, it
turns out to be quite difficult to describe this phenomenon because of the necessity of taking into account many dif-
ferent physical factors which influence the spreading of an actual droplet. In particular, of importance is correct repre-
sentation of the dynamics of the processes near the boundaries of the solid, gaseous, and liquid phases. A number of
approaches to the construction of a physicomathematical model of spreading of a droplet over a solid horizontal sur-
face have been proposed at present [1–4]. The common drawback of the existing models is the fact that each of them
describes just individual stages of the process of spreading rather than the entire process. Furthermore, theory ensures
only a qualitative agreement with experiment, while quantitative results differ significantly. As we believe, this is due
to failure to take into account the influence of the gravity forces on the kinetics of spreading of the liquid droplet over
the solid horizontal surface. Below we have described the process of spreading of the droplet and have obtained rela-
tions which are in good agreement with experimental data.

The results of the experiments [4, 5] show that in spreading, a liquid droplet has the shape shown schemati-
cally in Fig. 1. Most (the central part) of the droplet holds a shape close to a spherical segment and is bounded by a
convex surface with a boundary angle θ. A meniscus zone having a concave surface with a boundary angle close to
the equilibrium angle θc is formed at the periphery of the droplet. Such a form of the exterior droplet surface indicates
a uniform distribution of the pressure in the main (central) part and its redistribution in the meniscus zone, which is
responsible for spreading.

Let us make some simplifications. In the process of spreading of the droplet, we will concentrate our attention
on the characteristic properties of the motion of the meniscus zone relative to the solid surface, i.e., we consider the
central part of the droplet to be immobile as compared to the moving meniscus. The pressure of the liquid at the inlet
of the meniscus is assumed to be equal to the pressure in the central part of the droplet:

p = 
2σ
r1

 sin θ . (1)

The pressure near the external boundary of the meniscus and the solid surface is considered to be close to the equi-
librium value:

pc = 
2σ
r2

 sin θc . (2)

In the equations of motion of the meniscus zone, we disregard the local derivative of velocity with respect to time as
compared to the viscous term and ignore inertial effects. Then the motion of the liquid in the region of the meniscus
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in the cylindrical coordinate system whose Z axis is perpendicular to the solid surface and coincides with the axis of
symmetry is described by the system of equations

− 
∂p

∂r
 + µ 

∂2
u

∂z
2 = 0 ,   

∂p

∂z
 = 0 (3)

with boundary conditions

u = 0   for   z = 0 ,   
∂u

∂z
 = 0   for   z = h . (4)

From the second relation of system (3) it follows that p = p(r); upon integration of the first equation of the system
with account for boundary conditions (4) we find

u = − 
h

2

µ
 
∂p

∂r
 




z

h
 − 

z
2

h
2




 .

Whence for the flow rate of the liquid in the meniscus zone we obtain

Q = ∫ 
0

h

2πrudr = − 
2πrh

3

3µ
 
∂p

∂r
 .

As a result, the average velocity of motion of the meniscus zone is described by the relation

u = 
∂r

∂t
 = 

Q
S

 = 
Q

2πrh
 = − 

h
2
 (r)

3µ
 
∂p

∂r
 , (5)

which contains two unknown quantities: h(r) and ∂p ⁄ ∂r. To determine them we use the following considerations. From
relations (1) and (2) it is easy to obtain

− 
∂p

∂r
 C 

p − pc

r2 − r1
 = 

2σ
r1 (r2 − r1)

 



sin θ − 

r1

r2
 sin θc




 .

We take into account that the meniscus zone r2 − r1 is much smaller than the main part of the droplet r1, i.e.,
r1

 ⁄ r2 C 1. Finally, we have

− 
∂p

∂r
 = 

2σ
r1 (r2 − r1)

 (sin θ − sin θc) .

Fig. 1. Scheme of spreading of a droplet.
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Transformation of formula (5) for the average velocity of motion of the meniscus yields

u
_
 = 
∂r1

∂t
 = 

2σh
2
 (r)

3µr1 (r2 − r1)
 (sin θ − sin θc) .

(6)

Let us find the height of the droplet h1 = h(r1) at the entry to the meniscus zone. The tangential friction
stress is equal to zero on the free surface of the meniscus (see (4)). Therefore, the meniscus shape is determined only
by the surface tension of the liquid σ and the gravity force ρg. Then to find the shape of the meniscus surface we
can employ the equation of a static meniscus

d
2
rh

dz
2  



1 + 





drh

dz





 2



 −3 ⁄ 2

 = 
ρgz

σ

(7)

with boundary conditions

drh

dz
 = − ctan θc   for   z = 0 ,   

drh

dz
 = − ctan θ   for   z = h1 .

Single integration of (7) yields

drh

dz
 



1 + 





drh

dz




 2



 −1 ⁄ 2

 = 
ρgz

2

2σ
 + C ,

whence, with account for the boundary conditions, we represent the height of the droplet at the entry to the meniscus
zone as

h1 = 




2σ
ρg





1 ⁄ 2

 (cos θc − cos θ)1
 ⁄ 2 . (8)

The quantity h1 is the characteristic dimension of the meniscus zone; therefore, we assume that

r2 – r1 = ah , (9)

where the proportionality factor a can be obtained either by numerical solution of Eq. (7) or from experimental data.
We substitute relations (8) and (9) into formula (6). As a result, the kinetic equation describing the process of spread-
ing of the liquid droplet over the solid horizontal surface takes the form

dr1

dt
 = 

2σ
3aµ

 




2σ
ρg





1 ⁄ 2

 
1

r1
 (sin θ − sin θc) (cos θc − cos θ)1

 ⁄ 2 . (10)

The relationship between the boundary angle θ of the spherical segment (main part of the droplet) and the radius of
its base r1 will be determined from the trigonometric equality

6V

πr1
3 = 3 tan 

θ
2

 + tan
3
 
θ
2

 , (11)

where V = m ⁄ ρ. The system of equations (10) and (11) describes the kinetics of spreading of the droplet in the region

of both the obtuse boundary angles (θ > π ⁄ 2) and the acute angles (θ < π ⁄ 2) in a unified context. To assure ourselves

that this is true we introduce the dimensionless variables R = r1
 ⁄ rb (dimensionless radius, where rb = (3V ⁄ 2π)1

 ⁄ 3 is
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the radius of the base of the droplet when it has the shape of a hemisphere) and τ = t 
2σ
3µa





2σ
ρq





1 ⁄ 2



2π
3V





2 ⁄ 3

 (dimension-

less time). Then we represent the system of equations (10)–(11) in dimensionless form as

dR

dτ
 = 

1

R
 (sin θ − sin θc) (cos θc − cos θ)1

 ⁄ 2 ,   
4

R
3
 = 3 tan 

θ
2

 + tan
3
 
θ
2

 . (12)

Let us analyze system (12). First we consider the case where the equilibrium boundary angle θc is small, i.e.,
θc C 0. As a result, in spreading of the droplet in the region of obtuse boundary angles θ = π − α, for small α from
system (12) we obtain

dR

dτ
 = 
α √ 2

R
 ,   

4

R
3 = 





α

2





3

 . (13)

Integration of (13) with the initial condition R = 0 at τ = 0 leads to the expression

R = 
2 √ 2

4
1 ⁄ 3

 τ . (14)

In spreading of the droplet in the region of acute boundary angles θ < π ⁄ 2, for low values of θ from (12) we find

dR

dτ
 = 

1

√ 2
 
θ2

R
 ,   

4

R
3 = 

3

2
 θ . (15)

Solving this system with the initial condition R = R0 at τ = 0, we obtain

R
8
 − R0

8
 = 

512

9 √2
 τ .

The last relation for R8 >> R0
8 enables us to write

R = 1.587τ1 ⁄ 8 . (16)

Thus, from formulas (14) and (16) it follows that for θc C 0 the kinetics of movement of the perimeter of the droplet
changes from the dependence R D τ in the region of obtuse boundary angles θ > π ⁄ 2 to the dependence R D τ1 ⁄ 8 in

Fig. 2. Kinetics of spreading of a droplet: 1) θc = 0; 2) 0.174; 3) 0.523; 4)
0.872 rad.
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the region of acute boundary angles θ < π ⁄ 2. This result has been obtained in the unified context and it is in good
agreement with numerous experimental data [2, 4].

Let us turn back to the system of equations (12). It follows that the functional dependence of the kinetics of
spreading in the region of both the obtuse and acute boundary angles θ is mainly affected by the equilibrium bound-
ary angle θc. Figure 2 shows plots of the kinetics of spreading of the liquid droplet over the solid surface which
have been obtained by numerical solution of system (12) for different values of θc. Noteworthy is the fact that, when
sin θ ≤ sin θc, the liquid droplet remains immobile in both the region of obtuse (θ > π ⁄ 2) and acute (θ < π ⁄ 2) bound-
ary angles but it is spreading when the condition sin θ > sin θc is fulfilled.

In closing, we dwell on evaluation of the proportionality factor a. From Eqs. (7) and (8) we can state that it
is independent of the viscosity of the liquid µ and the volume of the droplet V. This theoretical conclusion is in agree-
ment with experimental data [4]. Moreover, if we assume that A is equal to the numerical value of the ratio
ρ g ⁄ σ , we obtain a satisfactory quantitative agreement between theory and experiment on the kinetics of spreading
of the droplet on a solid horizontal surface. Thus, for example, in experimental investigation of the spreading of drop-
lets of polymethylsiloxane liquids with θc C 0 over horizontal substrates in the region of acute boundary angles θ, the
empirical equation R = Aτ1 ⁄ 8 [4] has been obtained, which totally coincides with the theoretical formula (16). With a
change of 40 times in the viscosity µ and a change of 10 times in the droplet volume V the values of the constant A
varied within A = 1.543–1.603 for different types of solid substrates (lavsan, glass, aluminum). A comparison of these
experimental values with theoretical values (A = 1.587 from formula (16)) shows their quite satisfactory agreement.

NOTATION

A, proportionality factor; C, constant; g, free-fall acceleration; h, transverse coordinate of the meniscus surface;
m, droplet mass; p, pressure; Q, flow rate; r1,2, droplet radius; r and z, longitudinal and transverse coordinates; rh, lon-
gitudinal coordinate of the meniscus surface; S, cross-sectional area of the meniscus; t, time; u, velocity; V, volume of
the liquid droplet; α, certain angle; θ, boundary angle; θc, equilibrium boundary angle; µ, dynamic viscosity; ρ, den-
sity; σ, surface tension. Subscripts: 1 and 2, without a dynamic meniscus and with it; c, constant; b, base; 0, initial
value.
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